test-vad-with-non-streaming-asr-whisper.js
3.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
// Copyright (c) 2023-2024 Xiaomi Corporation (authors: Fangjun Kuang)
const sherpa_onnx = require('sherpa-onnx');
function createRecognizer() {
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'modelConfig': {
'whisper': {
'encoder': './sherpa-onnx-whisper-tiny.en/tiny.en-encoder.int8.onnx',
'decoder': './sherpa-onnx-whisper-tiny.en/tiny.en-decoder.int8.onnx',
'tailPaddings': 2000,
},
'tokens': './sherpa-onnx-whisper-tiny.en/tiny.en-tokens.txt',
'debug': 0,
}
};
return sherpa_onnx.createOfflineRecognizer(config);
}
function createVad() {
// please download silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
const config = {
sileroVad: {
model: './silero_vad.onnx',
threshold: 0.5,
minSpeechDuration: 0.25,
minSilenceDuration: 0.5,
windowSize: 512,
},
sampleRate: 16000,
debug: true,
numThreads: 1,
bufferSizeInSeconds: 60,
};
return sherpa_onnx.createVad(config);
}
const recognizer = createRecognizer();
const vad = createVad();
// please download ./Obama.wav from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const waveFilename = './Obama.wav';
const wave = sherpa_onnx.readWave(waveFilename);
if (wave.sampleRate != recognizer.config.featConfig.sampleRate) {
throw new Error(
'Expected sample rate: ${recognizer.config.featConfig.sampleRate}. Given: ${wave.sampleRate}');
}
console.log('Started')
let start = Date.now();
const windowSize = vad.config.sileroVad.windowSize;
for (let i = 0; i < wave.samples.length; i += windowSize) {
const thisWindow = wave.samples.subarray(i, i + windowSize);
vad.acceptWaveform(thisWindow);
while (!vad.isEmpty()) {
const segment = vad.front();
vad.pop();
let start_time = segment.start / wave.sampleRate;
let end_time = start_time + segment.samples.length / wave.sampleRate;
start_time = start_time.toFixed(2);
end_time = end_time.toFixed(2);
const stream = recognizer.createStream();
stream.acceptWaveform(wave.sampleRate, segment.samples);
recognizer.decode(stream);
const r = recognizer.getResult(stream);
if (r.text.length > 0) {
const text = r.text.toLowerCase().trim();
console.log(`${start_time} -- ${end_time}: ${text}`);
}
stream.free();
}
}
vad.flush();
while (!vad.isEmpty()) {
const segment = vad.front();
vad.pop();
let start_time = segment.start / wave.sampleRate;
let end_time = start_time + segment.samples.length / wave.sampleRate;
start_time = start_time.toFixed(2);
end_time = end_time.toFixed(2);
const stream = recognizer.createStream();
stream.acceptWaveform(wave.sampleRate, segment.samples);
recognizer.decode(stream);
const r = recognizer.getResult(stream);
if (r.text.length > 0) {
const text = r.text.toLowerCase().trim();
console.log(`${start_time} -- ${end_time}: ${text}`);
}
}
let stop = Date.now();
console.log('Done')
const elapsed_seconds = (stop - start) / 1000;
const duration = wave.samples.length / wave.sampleRate;
const real_time_factor = elapsed_seconds / duration;
console.log('Wave duration', duration.toFixed(3), 'seconds')
console.log('Elapsed', elapsed_seconds.toFixed(3), 'seconds')
console.log(
`RTF = ${elapsed_seconds.toFixed(3)}/${duration.toFixed(3)} =`,
real_time_factor.toFixed(3))
vad.free();
recognizer.free();