test-vad-with-non-streaming-asr-moonshine.js
4.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Copyright (c) 2023-2024 Xiaomi Corporation (authors: Fangjun Kuang)
const sherpa_onnx = require('sherpa-onnx');
function createRecognizer() {
// Please download test files from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const config = {
'modelConfig': {
'moonshine': {
'preprocessor': './sherpa-onnx-moonshine-tiny-en-int8/preprocess.onnx',
'encoder': './sherpa-onnx-moonshine-tiny-en-int8/encode.int8.onnx',
'uncachedDecoder':
'./sherpa-onnx-moonshine-tiny-en-int8/uncached_decode.int8.onnx',
'cachedDecoder':
'./sherpa-onnx-moonshine-tiny-en-int8/cached_decode.int8.onnx',
},
'tokens': './sherpa-onnx-moonshine-tiny-en-int8/tokens.txt',
'debug': 0,
}
};
return sherpa_onnx.createOfflineRecognizer(config);
}
function createVad() {
// please download silero_vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx
//
// please download ten-vad.onnx from
// https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/ten-vad.onnx
//
// You only need one vad
//
// To use ten-vad.onnx, please set sileroVad.model to ''
// and set tenVad.model to 'ten-vad.onnx'
//
const config = {
sileroVad: {
model: './silero_vad.onnx',
threshold: 0.5,
minSpeechDuration: 0.25,
minSilenceDuration: 0.5,
maxSpeechDuration: 5,
windowSize: 512,
},
tenVad: {
// model: './ten-vad.onnx',
model: '',
threshold: 0.5,
minSpeechDuration: 0.25,
minSilenceDuration: 0.5,
maxSpeechDuration: 5,
windowSize: 256,
},
sampleRate: 16000,
debug: true,
numThreads: 1,
bufferSizeInSeconds: 60,
};
return sherpa_onnx.createVad(config);
}
const recognizer = createRecognizer();
const vad = createVad();
// please download ./Obama.wav from
// https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models
const waveFilename = './Obama.wav';
const wave = sherpa_onnx.readWave(waveFilename);
if (wave.sampleRate != recognizer.config.featConfig.sampleRate) {
throw new Error(
'Expected sample rate: ${recognizer.config.featConfig.sampleRate}. Given: ${wave.sampleRate}');
}
console.log('Started')
let start = Date.now();
let windowSize = vad.config.sileroVad.windowSize;
if (vad.config.tenVad.model != '') {
windowSize = vad.config.tenVad.windowSize;
}
for (let i = 0; i < wave.samples.length; i += windowSize) {
const thisWindow = wave.samples.subarray(i, i + windowSize);
vad.acceptWaveform(thisWindow);
while (!vad.isEmpty()) {
const segment = vad.front();
vad.pop();
let start_time = segment.start / wave.sampleRate;
let end_time = start_time + segment.samples.length / wave.sampleRate;
start_time = start_time.toFixed(2);
end_time = end_time.toFixed(2);
const stream = recognizer.createStream();
stream.acceptWaveform(wave.sampleRate, segment.samples);
recognizer.decode(stream);
const r = recognizer.getResult(stream);
if (r.text.length > 0) {
const text = r.text.toLowerCase().trim();
console.log(`${start_time} -- ${end_time}: ${text}`);
}
stream.free();
}
}
vad.flush();
while (!vad.isEmpty()) {
const segment = vad.front();
vad.pop();
let start_time = segment.start / wave.sampleRate;
let end_time = start_time + segment.samples.length / wave.sampleRate;
start_time = start_time.toFixed(2);
end_time = end_time.toFixed(2);
const stream = recognizer.createStream();
stream.acceptWaveform(wave.sampleRate, segment.samples);
recognizer.decode(stream);
const r = recognizer.getResult(stream);
if (r.text.length > 0) {
const text = r.text.toLowerCase().trim();
console.log(`${start_time} -- ${end_time}: ${text}`);
}
}
let stop = Date.now();
console.log('Done')
const elapsed_seconds = (stop - start) / 1000;
const duration = wave.samples.length / wave.sampleRate;
const real_time_factor = elapsed_seconds / duration;
console.log('Wave duration', duration.toFixed(3), 'seconds')
console.log('Elapsed', elapsed_seconds.toFixed(3), 'seconds')
console.log(
`RTF = ${elapsed_seconds.toFixed(3)}/${duration.toFixed(3)} =`,
real_time_factor.toFixed(3))
vad.free();
recognizer.free();