winlin

support h264/avc codec by rtmp complex handshake(SrsComplexHandshake)

... ... @@ -105,7 +105,7 @@ MAIN_ENTRANCES=("srs_main_server")
# srs(simple rtmp server) over st(state-threads)
ModuleLibFiles=(${LibSTfile})
MODULE_OBJS="${CORE_OBJS[@]} ${CONFIG_OBJS[@]} ${PROTOCOL_OBJS[@]} ${MAIN_OBJS[@]}"
BUILD_KEY="simple_rtmp_server" APP_MAIN="srs_main_server" APP_NAME="simple_rtmp_server" LINK_OPTIONS="-ldl" SO_PATH="" . auto/apps.sh
BUILD_KEY="simple_rtmp_server" APP_MAIN="srs_main_server" APP_NAME="simple_rtmp_server" LINK_OPTIONS="-ldl -lssl" SO_PATH="" . auto/apps.sh
echo 'configure ok! '
... ...
... ... @@ -32,6 +32,7 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
/**
* Annex E. The FLV File Format
* @doc update the README.cmd
*/
class SrsCodec
{
... ...
... ... @@ -28,15 +28,200 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <srs_core_error.hpp>
#include <srs_core_log.hpp>
#include <srs_core_auto_free.hpp>
#include <srs_core_socket.hpp>
SrsComplexHandshake::SrsComplexHandshake()
{
// 68bytes FMS key which is used to sign the sever packet.
u_int8_t SrsGenuineFMSKey[] = {
0x47, 0x65, 0x6e, 0x75, 0x69, 0x6e, 0x65, 0x20,
0x41, 0x64, 0x6f, 0x62, 0x65, 0x20, 0x46, 0x6c,
0x61, 0x73, 0x68, 0x20, 0x4d, 0x65, 0x64, 0x69,
0x61, 0x20, 0x53, 0x65, 0x72, 0x76, 0x65, 0x72,
0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Media Server 001
0xf0, 0xee, 0xc2, 0x4a, 0x80, 0x68, 0xbe, 0xe8,
0x2e, 0x00, 0xd0, 0xd1, 0x02, 0x9e, 0x7e, 0x57,
0x6e, 0xec, 0x5d, 0x2d, 0x29, 0x80, 0x6f, 0xab,
0x93, 0xb8, 0xe6, 0x36, 0xcf, 0xeb, 0x31, 0xae
}; // 68
// 62bytes FP key which is used to sign the client packet.
u_int8_t SrsGenuineFPKey[] = {
0x47, 0x65, 0x6E, 0x75, 0x69, 0x6E, 0x65, 0x20,
0x41, 0x64, 0x6F, 0x62, 0x65, 0x20, 0x46, 0x6C,
0x61, 0x73, 0x68, 0x20, 0x50, 0x6C, 0x61, 0x79,
0x65, 0x72, 0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Player 001
0xF0, 0xEE, 0xC2, 0x4A, 0x80, 0x68, 0xBE, 0xE8,
0x2E, 0x00, 0xD0, 0xD1, 0x02, 0x9E, 0x7E, 0x57,
0x6E, 0xEC, 0x5D, 0x2D, 0x29, 0x80, 0x6F, 0xAB,
0x93, 0xB8, 0xE6, 0x36, 0xCF, 0xEB, 0x31, 0xAE
}; // 62
#include <openssl/evp.h>
#include <openssl/hmac.h>
int openssl_HMACsha256(const void* data, int data_size, const void* key, int key_size, void* digest) {
HMAC_CTX ctx;
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, (unsigned char*) key, key_size, EVP_sha256(), NULL);
HMAC_Update(&ctx, (unsigned char *) data, data_size);
unsigned int digest_size;
HMAC_Final(&ctx, (unsigned char *) digest, &digest_size);
HMAC_CTX_cleanup(&ctx);
if (digest_size != 32) {
return ERROR_OpenSslSha256DigestSize;
}
return ERROR_SUCCESS;
}
SrsComplexHandshake::~SrsComplexHandshake()
#include <openssl/dh.h>
#define RFC2409_PRIME_1024 \
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
"FFFFFFFFFFFFFFFF"
int __openssl_generate_key(
u_int8_t*& _private_key, u_int8_t*& _public_key, int32_t& size,
DH*& pdh, int32_t& bits_count, u_int8_t*& shared_key, int32_t& shared_key_length, BIGNUM*& peer_public_key
){
int ret = ERROR_SUCCESS;
//1. Create the DH
if ((pdh = DH_new()) == NULL) {
ret = ERROR_OpenSslCreateDH;
return ret;
}
//2. Create his internal p and g
if ((pdh->p = BN_new()) == NULL) {
ret = ERROR_OpenSslCreateP;
return ret;
}
if ((pdh->g = BN_new()) == NULL) {
ret = ERROR_OpenSslCreateG;
return ret;
}
//3. initialize p, g and key length
if (BN_hex2bn(&pdh->p, RFC2409_PRIME_1024) == 0) {
ret = ERROR_OpenSslParseP1024;
return ret;
}
if (BN_set_word(pdh->g, 2) != 1) {
ret = ERROR_OpenSslSetG;
return ret;
}
//4. Set the key length
pdh->length = bits_count;
//5. Generate private and public key
if (DH_generate_key(pdh) != 1) {
ret = ERROR_OpenSslGenerateDHKeys;
return ret;
}
// CreateSharedKey
if (pdh == NULL) {
ret = ERROR_OpenSslGenerateDHKeys;
return ret;
}
if (shared_key_length != 0 || shared_key != NULL) {
ret = ERROR_OpenSslShareKeyComputed;
return ret;
}
shared_key_length = DH_size(pdh);
if (shared_key_length <= 0 || shared_key_length > 1024) {
ret = ERROR_OpenSslGetSharedKeySize;
return ret;
}
shared_key = new u_int8_t[shared_key_length];
memset(shared_key, 0, shared_key_length);
peer_public_key = BN_bin2bn(_private_key, size, 0);
if (peer_public_key == NULL) {
ret = ERROR_OpenSslGetPeerPublicKey;
return ret;
}
if (DH_compute_key(shared_key, peer_public_key, pdh) == -1) {
ret = ERROR_OpenSslComputeSharedKey;
return ret;
}
// CopyPublicKey
if (pdh == NULL) {
ret = ERROR_OpenSslComputeSharedKey;
return ret;
}
int32_t keySize = BN_num_bytes(pdh->pub_key);
if ((keySize <= 0) || (size <= 0) || (keySize > size)) {
//("CopyPublicKey failed due to either invalid DH state or invalid call"); return ret;
ret = ERROR_OpenSslInvalidDHState;
return ret;
}
if (BN_bn2bin(pdh->pub_key, _public_key) != keySize) {
//("Unable to copy key"); return ret;
ret = ERROR_OpenSslCopyKey;
return ret;
}
return ret;
}
int openssl_generate_key(char* _private_key, char* _public_key, int32_t size)
{
int ret = ERROR_SUCCESS;
// Initialize
DH* pdh = NULL;
int32_t bits_count = 1024;
u_int8_t* shared_key = NULL;
int32_t shared_key_length = 0;
BIGNUM* peer_public_key = NULL;
ret = __openssl_generate_key(
(u_int8_t*&)_private_key, (u_int8_t*&)_public_key, size,
pdh, bits_count, shared_key, shared_key_length, peer_public_key
);
if (pdh != NULL) {
if (pdh->p != NULL) {
BN_free(pdh->p);
pdh->p = NULL;
}
if (pdh->g != NULL) {
BN_free(pdh->g);
pdh->g = NULL;
}
DH_free(pdh);
pdh = NULL;
}
if (shared_key != NULL) {
delete[] shared_key;
shared_key = NULL;
}
if (peer_public_key != NULL) {
BN_free(peer_public_key);
peer_public_key = NULL;
}
return ret;
}
// the digest key generate size.
#define OpensslHashSize 512
/**
* 764bytes key结构
* random-data: (offset)bytes
... ... @@ -60,11 +245,99 @@ struct key_block
// 4bytes
int32_t offset;
};
// calc the offset of key,
// the key->offset cannot be used as the offset of key.
int srs_key_block_get_offset(key_block* key)
{
int max_offset_size = 764 - 128 - 4;
int offset = 0;
u_int8_t* pp = (u_int8_t*)&key->offset;
offset += *pp++;
offset += *pp++;
offset += *pp++;
offset += *pp++;
return offset % max_offset_size;
}
// create new key block data.
// if created, user must free it by srs_key_block_free
void srs_key_block_init(key_block* key)
{
key->offset = (int32_t)rand();
key->random0 = NULL;
key->random1 = NULL;
int offset = srs_key_block_get_offset(key);
srs_assert(offset >= 0);
key->random0_size = offset;
if (key->random0_size > 0) {
key->random0 = new char[key->random0_size];
for (int i = 0; i < key->random0_size; i++) {
*(key->random0 + i) = rand() % 256;
}
}
for (int i = 0; i < (int)sizeof(key->key); i++) {
*(key->key + i) = rand() % 256;
}
key->random1_size = 764 - offset - 128 - 4;
if (key->random1_size > 0) {
key->random1 = new char[key->random1_size];
for (int i = 0; i < key->random1_size; i++) {
*(key->random1 + i) = rand() % 256;
}
}
}
// parse key block from c1s1.
// if created, user must free it by srs_key_block_free
// @c1s1_key_bytes the key start bytes, maybe c1s1 or c1s1+764
int srs_key_block_parse(key_block* key, char* c1s1_key_bytes)
{
int ret = ERROR_SUCCESS;
char* pp = c1s1_key_bytes + 764;
pp -= sizeof(int32_t);
key->offset = *(int32_t*)pp;
key->random0 = NULL;
key->random1 = NULL;
int offset = srs_key_block_get_offset(key);
srs_assert(offset >= 0);
pp = c1s1_key_bytes;
key->random0_size = offset;
if (key->random0_size > 0) {
key->random0 = new char[key->random0_size];
memcpy(key->random0, pp, key->random0_size);
}
pp += key->random0_size;
memcpy(key->key, pp, sizeof(key->key));
pp += sizeof(key->key);
key->random1_size = 764 - offset - 128 - 4;
if (key->random1_size > 0) {
key->random1 = new char[key->random1_size];
memcpy(key->random1, pp, key->random1_size);
}
return ret;
}
// free the block data create by
// srs_key_block_init or srs_key_block_parse
void srs_key_block_free(key_block* key)
{
if (key->random0) {
srs_freepa(key->random0);
}
if (key->random1) {
srs_freepa(key->random1);
}
}
/**
... ... @@ -90,11 +363,243 @@ struct digest_block
char* random1;
int random1_size;
};
// calc the offset of digest,
// the key->offset cannot be used as the offset of digest.
int srs_digest_block_get_offset(digest_block* digest)
{
int max_offset_size = 764 - 32 - 4;
int offset = 0;
u_int8_t* pp = (u_int8_t*)&digest->offset;
offset += *pp++;
offset += *pp++;
offset += *pp++;
offset += *pp++;
return offset % max_offset_size;
}
// create new digest block data.
// if created, user must free it by srs_digest_block_free
void srs_digest_block_init(digest_block* digest)
{
digest->offset = (int32_t)rand();
digest->random0 = NULL;
digest->random1 = NULL;
int offset = srs_digest_block_get_offset(digest);
srs_assert(offset >= 0);
digest->random0_size = offset;
if (digest->random0_size > 0) {
digest->random0 = new char[digest->random0_size];
for (int i = 0; i < digest->random0_size; i++) {
*(digest->random0 + i) = rand() % 256;
}
}
for (int i = 0; i < (int)sizeof(digest->digest); i++) {
*(digest->digest + i) = rand() % 256;
}
digest->random1_size = 764 - 4 - offset - 32;
if (digest->random1_size > 0) {
digest->random1 = new char[digest->random1_size];
for (int i = 0; i < digest->random1_size; i++) {
*(digest->random1 + i) = rand() % 256;
}
}
}
// parse digest block from c1s1.
// if created, user must free it by srs_digest_block_free
// @c1s1_digest_bytes the digest start bytes, maybe c1s1 or c1s1+764
int srs_digest_block_parse(digest_block* digest, char* c1s1_digest_bytes)
{
int ret = ERROR_SUCCESS;
char* pp = c1s1_digest_bytes;
digest->offset = *(int32_t*)pp;
pp += sizeof(int32_t);
digest->random0 = NULL;
digest->random1 = NULL;
int offset = srs_digest_block_get_offset(digest);
srs_assert(offset >= 0);
digest->random0_size = offset;
if (digest->random0_size > 0) {
digest->random0 = new char[digest->random0_size];
memcpy(digest->random0, pp, digest->random0_size);
}
pp += digest->random0_size;
memcpy(digest->digest, pp, sizeof(digest->digest));
pp += sizeof(digest->digest);
digest->random1_size = 764 - 4 - offset - 32;
if (digest->random1_size > 0) {
digest->random1 = new char[digest->random1_size];
memcpy(digest->random1, pp, digest->random1_size);
}
return ret;
}
// free the block data create by
// srs_digest_block_init or srs_digest_block_parse
void srs_digest_block_free(digest_block* digest)
{
if (digest->random0) {
srs_freepa(digest->random0);
}
if (digest->random1) {
srs_freepa(digest->random1);
}
}
/**
* the schema type.
*/
enum srs_schema_type {
srs_schema0 = 0, // key-digest sequence
srs_schema1 = 1, // digest-key sequence
srs_schema_invalid = 2,
};
void __time_copy_to(char*& pp, int32_t time)
{
// 4bytes time
*(int32_t*)pp = time;
pp += 4;
}
void __version_copy_to(char*& pp, int32_t version)
{
// 4bytes version
*(int32_t*)pp = version;
pp += 4;
}
void __key_copy_to(char*& pp, key_block* key)
{
// 764bytes key block
if (key->random0_size > 0) {
memcpy(pp, key->random0, key->random0_size);
}
pp += key->random0_size;
memcpy(pp, key->key, sizeof(key->key));
pp += sizeof(key->key);
if (key->random1_size > 0) {
memcpy(pp, key->random1, key->random1_size);
}
pp += key->random1_size;
*(int32_t*)pp = key->offset;
pp += 4;
}
void __digest_copy_to(char*& pp, digest_block* digest, bool with_digest)
{
// 732bytes digest block without the 32bytes digest-data
// nbytes digest block part1
*(int32_t*)pp = digest->offset;
pp += 4;
if (digest->random0_size > 0) {
memcpy(pp, digest->random0, digest->random0_size);
}
pp += digest->random0_size;
// digest
if (with_digest) {
memcpy(pp, digest->digest, 32);
pp += 32;
}
// nbytes digest block part2
if (digest->random1_size > 0) {
memcpy(pp, digest->random1, digest->random1_size);
}
pp += digest->random1_size;
}
/**
* copy whole c1s1 to bytes.
*/
void schema0_copy_to(char* bytes, bool with_digest,
int32_t time, int32_t version, key_block* key, digest_block* digest)
{
char* pp = bytes;
__time_copy_to(pp, time);
__version_copy_to(pp, version);
__key_copy_to(pp, key);
__digest_copy_to(pp, digest, with_digest);
if (with_digest) {
srs_assert(pp - bytes == 1536);
} else {
srs_assert(pp - bytes == 1536 - 32);
}
}
void schema1_copy_to(char* bytes, bool with_digest,
int32_t time, int32_t version, digest_block* digest, key_block* key)
{
char* pp = bytes;
__time_copy_to(pp, time);
__version_copy_to(pp, version);
__digest_copy_to(pp, digest, with_digest);
__key_copy_to(pp, key);
if (with_digest) {
srs_assert(pp - bytes == 1536);
} else {
srs_assert(pp - bytes == 1536 - 32);
}
}
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version, key and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2)
*/
char* bytes_join_schema0(int32_t time, int32_t version, key_block* key, digest_block* digest)
{
char* bytes = new char[1536 -32];
schema0_copy_to(bytes, false, time, version, key, digest);
return bytes;
}
/**
* c1s1 is splited by digest:
* c1s1-part1: n bytes (time, version and digest-part1).
* digest-data: 32bytes
* c1s1-part2: (1536-n-32)bytes (digest-part2 and key)
*/
char* bytes_join_schema1(int32_t time, int32_t version, digest_block* digest, key_block* key)
{
char* bytes = new char[1536 -32];
schema1_copy_to(bytes, false, time, version, digest, key);
return bytes;
}
/**
* compare the memory in bytes.
*/
bool srs_bytes_equals(void* pa, void* pb, int size){
u_int8_t* a = (u_int8_t*)pa;
u_int8_t* b = (u_int8_t*)pb;
for(int i = 0; i < size; i++){
if(a[i] != b[i]){
return false;
}
}
return true;
}
/**
... ... @@ -111,10 +616,6 @@ void srs_digest_block_free(digest_block* digest)
*/
struct c1s1
{
enum schema_type {
schema0 = 0,
schema1 = 1
};
union block {
key_block key;
digest_block digest;
... ... @@ -134,33 +635,443 @@ struct c1s1
block block1;
// the logic schema
schema_type schema;
srs_schema_type schema;
c1s1();
virtual ~c1s1();
/**
* get the digest key.
*/
virtual char* get_digest();
/**
* copy to bytes.
*/
virtual void dump(char* _c1s1);
/**
* client: create and sign c1 by schema.
* sign the c1, generate the digest.
* calc_c1_digest(c1, schema) {
* get c1s1-joined from c1 by specified schema
* digest-data = HMACsha256(c1s1-joined, FPKey, 30)
* return digest-data;
* }
* random fill 1536bytes c1 // also fill the c1-128bytes-key
* time = time() // c1[0-3]
* version = [0x80, 0x00, 0x07, 0x02] // c1[4-7]
* schema = choose schema0 or schema1
* digest-data = calc_c1_digest(c1, schema)
* copy digest-data to c1
*/
virtual int c1_create(srs_schema_type _schema);
/**
* server: parse the c1s1, discovery the key and digest by schema.
* use the c1_validate_digest() to valid the digest of c1.
*/
virtual int c1_parse(char* _c1s1, srs_schema_type _schema);
/**
* server: validate the parsed schema and c1s1
*/
virtual int c1_validate_digest(bool& is_valid);
/**
* server: create and sign the s1 from c1.
*/
virtual int s1_create(c1s1* c1);
private:
virtual int calc_s1_digest(char*& digest);
virtual int calc_c1_digest(char*& digest);
virtual void destroy_blocks();
};
/**
* the c2s2 complex handshake structure.
* random-data: 1504bytes
* digest-data: 32bytes
*/
struct c2s2
{
char random[1504];
char digest[32];
c2s2();
virtual ~c2s2();
/**
* copy to bytes.
*/
virtual void dump(char* _c2s2);
/**
* create c2.
* random fill c2s2 1536 bytes
*
* // client generate C2, or server valid C2
* temp-key = HMACsha256(s1-digest, FPKey, 62)
* c2-digest-data = HMACsha256(c2-random-data, temp-key, 32)
*/
virtual int c2_create(c1s1* s1);
/**
* create s2.
* random fill c2s2 1536 bytes
*
* // server generate S2, or client valid S2
* temp-key = HMACsha256(c1-digest, FMSKey, 68)
* s2-digest-data = HMACsha256(s2-random-data, temp-key, 32)
*/
virtual int s2_create(c1s1* c1);
};
c2s2::c2s2()
{
for (int i = 0; i < 1504; i++) {
*(random + i) = rand();
}
for (int i = 0; i < 32; i++) {
*(digest + i) = rand();
}
}
c2s2::~c2s2()
{
}
void c2s2::dump(char* _c2s2)
{
memcpy(_c2s2, random, 1504);
memcpy(_c2s2 + 1504, digest, 32);
}
int c2s2::c2_create(c1s1* s1)
{
int ret = ERROR_SUCCESS;
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(s1->get_digest(), 32, SrsGenuineFPKey, 62, temp_key)) != ERROR_SUCCESS) {
srs_error("create c2 temp key failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create c2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("generate c2 digest success.");
memcpy(digest, _digest, 32);
return ret;
}
int c2s2::s2_create(c1s1* c1)
{
int ret = ERROR_SUCCESS;
char temp_key[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1->get_digest(), 32, SrsGenuineFMSKey, 68, temp_key)) != ERROR_SUCCESS) {
srs_error("create s2 temp key failed. ret=%d", ret);
return ret;
}
srs_verbose("generate s2 temp key success.");
char _digest[OpensslHashSize];
if ((ret = openssl_HMACsha256(random, 1504, temp_key, 32, _digest)) != ERROR_SUCCESS) {
srs_error("create s2 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("generate s2 digest success.");
memcpy(digest, _digest, 32);
return ret;
}
c1s1::c1s1()
{
schema = srs_schema_invalid;
}
c1s1::~c1s1()
{
destroy_blocks();
}
char* c1s1::get_digest()
{
srs_assert(schema != srs_schema_invalid);
if (schema == srs_schema0) {
return block1.digest.digest;
} else {
return block0.digest.digest;
}
}
void c1s1::dump(char* _c1s1)
{
srs_assert(schema != srs_schema_invalid);
if (schema == srs_schema0) {
schema0_copy_to(_c1s1, true, time, version, &block0.key, &block1.digest);
} else {
schema1_copy_to(_c1s1, true, time, version, &block0.digest, &block1.key);
}
}
int c1s1::c1_create(srs_schema_type _schema)
{
int ret = ERROR_SUCCESS;
if (_schema == srs_schema_invalid) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("create c1 failed. invalid schema=%d, ret=%d", _schema, ret);
return ret;
}
destroy_blocks();
time = ::time(NULL);
version = 0x02070080; // client c1 version
if (_schema == srs_schema0) {
srs_key_block_init(&block0.key);
srs_digest_block_init(&block1.digest);
} else {
srs_digest_block_init(&block0.digest);
srs_key_block_init(&block1.key);
}
schema = _schema;
char* digest = NULL;
if ((ret = calc_c1_digest(digest)) != ERROR_SUCCESS) {
srs_error("sign c1 error, failed to calc digest. ret=%d", ret);
return ret;
}
srs_assert(digest != NULL);
SrsAutoFree(char, digest, true);
if (schema == srs_schema0) {
memcpy(block1.digest.digest, digest, 32);
} else {
memcpy(block0.digest.digest, digest, 32);
}
return ret;
}
int c1s1::c1_parse(char* _c1s1, srs_schema_type _schema)
{
int ret = ERROR_SUCCESS;
if (_schema == srs_schema_invalid) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("parse c1 failed. invalid schema=%d, ret=%d", _schema, ret);
return ret;
}
destroy_blocks();
time = *(int32_t*)_c1s1;
version = *(int32_t*)(_c1s1 + 4); // client c1 version
if (_schema == srs_schema0) {
if ((ret = srs_key_block_parse(&block0.key, _c1s1 + 8)) != ERROR_SUCCESS) {
srs_error("parse the c1 key failed. ret=%d", ret);
return ret;
}
if ((ret = srs_digest_block_parse(&block1.digest, _c1s1 + 8 + 764)) != ERROR_SUCCESS) {
srs_error("parse the c1 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("parse c1 key-digest success");
} else if (_schema == srs_schema1) {
if ((ret = srs_digest_block_parse(&block0.digest, _c1s1 + 8)) != ERROR_SUCCESS) {
srs_error("parse the c1 key failed. ret=%d", ret);
return ret;
}
if ((ret = srs_key_block_parse(&block1.key, _c1s1 + 8 + 764)) != ERROR_SUCCESS) {
srs_error("parse the c1 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("parse c1 digest-key success");
} else {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("parse c1 failed. invalid schema=%d, ret=%d", _schema, ret);
return ret;
}
schema = _schema;
return ret;
}
int c1s1::c1_validate_digest(bool& is_valid)
{
int ret = ERROR_SUCCESS;
char* c1_digest = NULL;
if ((ret = calc_c1_digest(c1_digest)) != ERROR_SUCCESS) {
srs_error("validate c1 error, failed to calc digest. ret=%d", ret);
return ret;
}
srs_assert(c1_digest != NULL);
SrsAutoFree(char, c1_digest, true);
if (schema == srs_schema0) {
is_valid = srs_bytes_equals(block1.digest.digest, c1_digest, 32);
} else {
is_valid = srs_bytes_equals(block0.digest.digest, c1_digest, 32);
}
return ret;
}
int c1s1::s1_create(c1s1* c1)
{
int ret = ERROR_SUCCESS;
if (c1->schema == srs_schema_invalid) {
ret = ERROR_RTMP_CH_SCHEMA;
srs_error("create s1 failed. invalid schema=%d, ret=%d", c1->schema, ret);
return ret;
}
destroy_blocks();
schema = c1->schema;
c1s1()
{
time = ::time(NULL);
version = 0x00;
version = 0x01000504; // server s1 version
schema = c1s1::schema0;
if (schema == srs_schema0) {
srs_key_block_init(&block0.key);
srs_digest_block_init(&block1.digest);
} else {
srs_digest_block_init(&block0.digest);
srs_key_block_init(&block1.key);
}
if (schema == srs_schema0) {
if ((ret = openssl_generate_key(c1->block0.key.key, block0.key.key, 128)) != ERROR_SUCCESS) {
srs_error("calc s1 key failed. ret=%d", ret);
return ret;
}
} else {
if ((ret = openssl_generate_key(c1->block1.key.key, block1.key.key, 128)) != ERROR_SUCCESS) {
srs_error("calc s1 key failed. ret=%d", ret);
return ret;
}
virtual ~c1s1()
{
if (schema == c1s1::schema0) {
}
srs_verbose("calc s1 key success.");
char* s1_digest = NULL;
if ((ret = calc_s1_digest(s1_digest)) != ERROR_SUCCESS) {
srs_error("calc s1 digest failed. ret=%d", ret);
return ret;
}
srs_verbose("calc s1 digest success.");
srs_assert(s1_digest != NULL);
SrsAutoFree(char, s1_digest, true);
if (schema == srs_schema0) {
memcpy(block1.digest.digest, s1_digest, 32);
} else {
memcpy(block0.digest.digest, s1_digest, 32);
}
srs_verbose("copy s1 key success.");
return ret;
}
int c1s1::calc_s1_digest(char*& digest)
{
int ret = ERROR_SUCCESS;
srs_assert(schema == srs_schema0 || schema == srs_schema1);
char* c1s1_joined_bytes = NULL;
if (schema == srs_schema0) {
c1s1_joined_bytes = bytes_join_schema0(time, version, &block0.key, &block1.digest);
} else {
c1s1_joined_bytes = bytes_join_schema1(time, version, &block0.digest, &block1.key);
}
srs_assert(c1s1_joined_bytes != NULL);
SrsAutoFree(char, c1s1_joined_bytes, true);
digest = new char[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1s1_joined_bytes, 1536 - 32, SrsGenuineFMSKey, 36, digest)) != ERROR_SUCCESS) {
srs_error("calc digest for s1 failed. ret=%d", ret);
return ret;
}
srs_verbose("digest calculated for s1");
return ret;
}
int c1s1::calc_c1_digest(char*& digest)
{
int ret = ERROR_SUCCESS;
srs_assert(schema == srs_schema0 || schema == srs_schema1);
char* c1s1_joined_bytes = NULL;
if (schema == srs_schema0) {
c1s1_joined_bytes = bytes_join_schema0(time, version, &block0.key, &block1.digest);
} else {
c1s1_joined_bytes = bytes_join_schema1(time, version, &block0.digest, &block1.key);
}
srs_assert(c1s1_joined_bytes != NULL);
SrsAutoFree(char, c1s1_joined_bytes, true);
digest = new char[OpensslHashSize];
if ((ret = openssl_HMACsha256(c1s1_joined_bytes, 1536 - 32, SrsGenuineFPKey, 30, digest)) != ERROR_SUCCESS) {
srs_error("calc digest for c1 failed. ret=%d", ret);
return ret;
}
srs_verbose("digest calculated for c1");
return ret;
}
void c1s1::destroy_blocks()
{
if (schema == srs_schema_invalid) {
return;
}
if (schema == srs_schema0) {
srs_key_block_free(&block0.key);
srs_digest_block_free(&block1.digest);
} else {
srs_digest_block_free(&block0.digest);
srs_key_block_free(&block1.key);
}
}
};
}
SrsComplexHandshake::SrsComplexHandshake()
{
}
SrsComplexHandshake::~SrsComplexHandshake()
{
}
int SrsComplexHandshake::handshake(SrsSocket& skt, char* _c1)
{
int ret = ERROR_SUCCESS;
ssize_t nsize;
static bool _random_initialized = false;
if (!_random_initialized) {
srand(0);
... ... @@ -168,7 +1079,65 @@ int SrsComplexHandshake::handshake(SrsSocket& skt, char* _c1)
srs_trace("srand initialized the random.");
}
// decode c1
c1s1 c1;
// try schema0.
if ((ret = c1.c1_parse(_c1, srs_schema0)) != ERROR_SUCCESS) {
srs_error("parse c1 schema%d error. ret=%d", srs_schema0, ret);
return ret;
}
// try schema1
bool is_valid = false;
if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
if ((ret = c1.c1_parse(_c1, srs_schema1)) != ERROR_SUCCESS) {
srs_error("parse c1 schema%d error. ret=%d", srs_schema1, ret);
return ret;
}
if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {
ret = ERROR_RTMP_TRY_SIMPLE_HS;
srs_info("all schema valid failed, try simple handshake. ret=%d", ret);
return ret;
}
}
srs_verbose("decode c1 success.");
// encode s1
c1s1 s1;
if ((ret = s1.s1_create(&c1)) != ERROR_SUCCESS) {
srs_error("create s1 from c1 failed. ret=%d", ret);
return ret;
}
srs_verbose("create s1 from c1 success.");
c2s2 s2;
if ((ret = s2.s2_create(&c1)) != ERROR_SUCCESS) {
srs_error("create s2 from c1 failed. ret=%d", ret);
return ret;
}
srs_verbose("create s2 from c1 success.");
// sendout s0s1s2
char* s0s1s2 = new char[3073];
SrsAutoFree(char, s0s1s2, true);
// plain text required.
s0s1s2[0] = 0x03;
s1.dump(s0s1s2 + 1);
s2.dump(s0s1s2 + 1537);
if ((ret = skt.write(s0s1s2, 3073, &nsize)) != ERROR_SUCCESS) {
srs_warn("complex handshake send s0s1s2 failed. ret=%d", ret);
return ret;
}
srs_verbose("complex handshake send s0s1s2 success.");
// recv c2
char* c2 = new char[1536];
SrsAutoFree(char, c2, true);
if ((ret = skt.read_fully(c2, 1536, &nsize)) != ERROR_SUCCESS) {
srs_warn("complex handshake read c2 failed. ret=%d", ret);
return ret;
}
srs_verbose("complex handshake read c2 success.");
return ret;
}
... ...
... ... @@ -36,6 +36,7 @@ class SrsSocket;
* rtmp complex handshake,
* @see also crtmp(crtmpserver) or librtmp,
* @see also: http://blog.csdn.net/win_lin/article/details/13006803
* @doc update the README.cmd
*/
class SrsComplexHandshake
{
... ...
... ... @@ -63,10 +63,39 @@ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#define ERROR_RTMP_AMF0_ENCODE 309
#define ERROR_RTMP_CHUNK_SIZE 310
#define ERROR_RTMP_TRY_SIMPLE_HS 311
#define ERROR_RTMP_CH_SCHEMA 312
#define ERROR_SYSTEM_STREAM_INIT 400
#define ERROR_SYSTEM_PACKET_INVALID 401
#define ERROR_SYSTEM_CLIENT_INVALID 402
#define ERROR_SYSTEM_ASSERT_FAILED 403
// see librtmp.
// failed when open ssl create the dh
#define ERROR_OpenSslCreateDH 500
// failed when open ssl create the Private key.
#define ERROR_OpenSslCreateP 501
// when open ssl create G.
#define ERROR_OpenSslCreateG 502
// when open ssl parse P1024
#define ERROR_OpenSslParseP1024 503
// when open ssl set G
#define ERROR_OpenSslSetG 504
// when open ssl generate DHKeys
#define ERROR_OpenSslGenerateDHKeys 505
// when open ssl share key already computed.
#define ERROR_OpenSslShareKeyComputed 506
// when open ssl get shared key size.
#define ERROR_OpenSslGetSharedKeySize 507
// when open ssl get peer public key.
#define ERROR_OpenSslGetPeerPublicKey 508
// when open ssl compute shared key.
#define ERROR_OpenSslComputeSharedKey 509
// when open ssl is invalid DH state.
#define ERROR_OpenSslInvalidDHState 510
// when open ssl copy key
#define ERROR_OpenSslCopyKey 511
// when open ssl sha256 digest key invalid size.
#define ERROR_OpenSslSha256DigestSize 512
#endif
\ No newline at end of file
... ...
... ... @@ -345,6 +345,7 @@ public:
* shared ptr message.
* for audio/video/data message that need less memory copy.
* and only for output.
* @doc update the README.cmd
*/
class SrsSharedPtrMessage : public ISrsMessage
{
... ...
... ... @@ -210,18 +210,18 @@ int SrsRtmp::handshake()
// plain text required.
s0s1s2[0] = 0x03;
if ((ret = skt.write(s0s1s2, 3073, &nsize)) != ERROR_SUCCESS) {
srs_warn("send s0s1s2 failed. ret=%d", ret);
srs_warn("simple handshake send s0s1s2 failed. ret=%d", ret);
return ret;
}
srs_verbose("send s0s1s2 success.");
srs_verbose("simple handshake send s0s1s2 success.");
char* c2 = new char[1536];
SrsAutoFree(char, c2, true);
if ((ret = skt.read_fully(c2, 1536, &nsize)) != ERROR_SUCCESS) {
srs_warn("read c2 failed. ret=%d", ret);
srs_warn("simple handshake read c2 failed. ret=%d", ret);
return ret;
}
srs_verbose("read c2 success.");
srs_verbose("simple handshake read c2 success.");
srs_trace("simple handshake success.");
... ...
... ... @@ -68,6 +68,7 @@ public:
private:
/**
* detect the time jitter and correct it.
* @doc update the README.cmd
*/
virtual int jitter_correct(SrsSharedPtrMessage* msg);
};
... ...